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Abstract. The magnetic ordering of fluorite structure uranium dioxide has been investigated using fully-
relativistic linear combinations of Gaussian type orbitals - fitting function (LCGTO-FF) calculations,
within the generalized gradient approximation (GGA) to density functional theory. Three types of collinear
spin-orderings were considered; ferromagnetic with spins aligned in the (001) direction and two antifer-
romagnetic (001) layer structures with spins aligned either perpendicular to each plane (001) or parallel
to each plane (100). For each ordering, the total energy and spin-moment were calculated both with
and without spin-orbit coupling. The ferromagnetic ordering is found to be energetically preferred to the
antiferromagnetic orderings, contrary to experiment, whether or not spin-orbit coupling is included. Spin-
orbit coupling is shown to have a significant quenching effect on the spin-moment and also introduces a
strong magnetic anisotropy in the antiferromagnetic state that favors the (001) alignment over the (100)
alignment.

PACS. 71.15.Rf Relativistic effects – 75.25.+z Spin arrangements in magnetically ordered materials (in-
cluding neutron and spin-polarized electron studies, synchrotron-source X-ray scattering, etc.) – 75.50.Ee
Antiferromagnetics – 75.30.Gw Magnetic anisotropy – 64.30.+t Equations of state of specific substances

1 Background

Fluorite structure uranium dioxide (UO2) is of long-
standing interest to materials scientists due to its techno-
logical value as a nuclear reactor fuel and heterogeneous
catalyst. UO2 also is known to be a highly-reactive toxic
contaminant, which may appear in the environment either
in its crystalline form or as an oxide-layer formed on metal-
lic uranium. As a result, the electronic structure of bulk
UO2 has been the subject of much experimental research
over the last two decades. Those measurements reveal that
the energy bands of UO2, near the Fermi level, may be di-
vided into three distinct regions: (1) A valence band of
mixed O(2p), U(5f), and U(6d) character, ranging from 8
to 4 eV below the Fermi level, which provides most of the
bonding [1,2]; (2) A nearly dispersionless band containing
two well-localized U(5f) electrons, that lies roughly 1.5 eV
below the Fermi level [1,2]; and (3) A conduction band
that begins 1 eV above the Fermi level [3] with mostly
U(5f) character, changing to U(6d) character at higher
energies [4]. The dispersionless U(5f) band and the bot-
tom of the conduction band represent the bottom and top
of a 2.5 eV band gap; i.e., UO2 is insulating. Detailed anal-
ysis of core photoemission spectra [5] suggests that UO2

is a prototypical Mott-Hubbard-type insulator, with a 5f
to 5f band gap [6,7]. In addition, it is well-established
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that UO2 becomes a noncollinear antiferromagnet below
30.8 K [8–10].

The complicated combination of physical effects man-
ifested by UO2 (highly-correlated electron effects, non-
collinear antiferromagnetism, and large relativistic effects)
poses a severe challenge for electronic structure theorists.
In fact, although a number of density functional the-
ory [11,12] (DFT) electronic structure calculations have
been carried out on UO2, [4,13–20] none has realistically
accounted for all of the observed effects. Those calcula-
tions may be divided into two categories: (1) “Traditional”
DFT calculations using either the local density approxi-
mation [21] (LDA) or the generalized gradient approxi-
mation [22] (GGA), neither of which adequately describes
the highly-correlated nature of the 5f electrons; and (2)
LDA+U calculations [23] which approximate the highly-
correlated electron effects by adding a strong Coulomb re-
pulsion term, U, to a standard LDA calculation, but have
not yet included density gradient corrections or spin-orbit
coupling (SOC) effects in the particular case of UO2.

One common failing of all calculations, to date, is
that none of them has simultaneously included both spin-
polarization and SOC effects, although both of those ef-
fects are known [19,20] to be important individually. This
deficiency is particularly unfortunate, because the exis-
tence of noncollinear magnetism depends on the spin-
anisotropy provided by SOC. In addition, even at the
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scalar-relativistic level, the correct DFT prediction for the
magnetic ordering in UO2 has not been clearly established,
with one LDA calculation [17] predicting an antiferromag-
netic ground state at the ambient volume and two re-
cent GGA calculations [19,20] predicting a ferromagnetic
ground state at that volume.

To address those issues, the magnetic ordering in flu-
orite structure UO2 has been investigated, within the
collinear spin approximation, using the GGA model and
a relativistic variant [24–27] of the linear combinations
of Gaussian type orbitals - fitting function (LCGTO-FF)
technique [28,29], as embodied in the program package
GTOFF [30]. Three types of magnetic order were consid-
ered; ferromagnetic with the spins aligned in the (001)
direction and two distinct antiferromagnetic (001) layer
structures with spins aligned either perpendicular to each
plane, in the (001) direction, or parallel to each plane, in
the (100) direction. For each ordering, the total energy
and spin-moment were calculated both with and without
SOC included, clearly revealing the impact of SOC on the
spin-polarization in UO2.

In the next section, the relativistic LCGTO-FF
method will be described, including the implementation of
simultaneous collinear spin-polarization and SOC. Next,
a few computational details will be discussed. The results
obtained here for the magnetic orderings and the zero-
pressure properties of UO2 will be presented in the fourth
section. Concluding remarks will be given in the final
section.

2 Theoretical background

The LCGTO-FF method [28,29], as implemented in the
crystalline electronic structure code GTOFF [30], is dis-
tinguished from other variants of the LCGTO methodol-
ogy through its use of two independent auxiliary GTO
basis sets to expand the charge density and exchange-
correlation (XC) integral kernels; here using the GGA
model. The charge fit coefficients are determined varia-
tionally, by minimizing the error in the Coulomb energy,
while the XC coefficients are obtained from a least squares
fit. The program GTOFF references the XC fit to the fit-
ted density, thereby achieving a substantial speedup of
the calculations, relative to other implementations of the
LCGTO-FF method that use the exact density in the
XC fit. In its nonrelativistic form, this implementation
of the LCGTO-FF method has been in use for nearly two
decades and is known to produce results that agree well
with results from other all-electron, full-potential DFT
electronic structure methods.

During the last five years, the LCGTO-FF method
implemented in GTOFF has been extended [24–27] to
include relativistic effects at progressively more realistic
levels of approximation. Scalar-relativity was initially
incorporated [24] using an incomplete, nuclear-only
Douglas-Kroll-Hess (nDKH) transformation [31,32], that
neglected all terms involving cross-products of the momen-
tum operator [33]. That implementation was subsequently

extended to include all of the scalar-relativistic cross-
product terms and SOC terms produced by the nDKH
transformation [25], allowing the first fully-relativistic
LCGTO-FF calculations for the light-actinide metals [26].
Although the nDKH transformation has been demon-
strated to produce reliable scalar-relativistic results for
both atoms and solids that compare favorably with other
state-of-the-art electronic structure methods, it also was
shown to consistently overestimate SOC effects [27]. That
specific limitation was overcome through the develop-
ment of the screened-nuclear-spin-orbit (SNSO) approx-
imation [27], which approximately includes two-electron
SOC effects, without increasing the computational re-
quirements, relative to the nDKH approximation.

The one-electron equation associated with the fully-
relativistic nDKH+SNSO approximation described above,
and implemented in GTOFF, may be written as

[hKS + ∆hnDKH + ∆hSNSO] φi = εiφi. (1)

In equation (1), the first term on the lhs is the standard
nonrelativistic Kohn-Sham operator [12]

hKS =
p2

2m
+ veff (2)

where
veff = vn + ve + vxc (3)

is the effective one-electron potential formed from the nu-
clear potential vn, the electronic Coulomb potential ve,
and the DFT exchange-correlation (XC) potential vxc.
The second operator on the lhs of Equation (1) is the
relativistic correction operator obtained from the nDKH
approximation [31,32],

∆hnDKH =
[
Ep − p2

2m

]
+ Ap [vn + RpvnRp]Ap

− 1
2
(EpW

2 + W 2Ep + 2WEpW ) − vn

where
Ep = c(p2 + m2c2)

1
2 , (4)

Ap =
[
Ep + mc2

2Ep

] 1
2

, (5)

Rp = Kp σ · p, (6)

Kp = c/(Ep + mc2), (7)

and W can be expressed in momentum-space as

Wp,p′ = Ap(Rp − Rp′)Ap′

[
vn(p,p′)
Ep + Ep′

]
, (8)

with vn(p,p′) being the momentum-space representation
of vn. The final operator on the lhs of equation 1 is the
two-electron SOC operator obtained from the SNSO ap-
proximation [27],

∆hSNSO(i, j) = −
√

Q(li)
Zi

hnSO

√
Q(lj)
Zj

(9)
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where i and j are basis function indices, Zi is the nuclear
charge associated with the center of basis function i, hnSO

is the nuclear-only SOC term embedded in ∆hnDKH, and
Q(li) is a basis function dependent operator given by;

Q(li = 0, 1, 2, 3, · · · ) = 0, 2, 10, 28, · · · (10)

The nDKH+SNSO approximation, expressed in equa-
tion (1), has been shown to produce reliable results
for large Z materials that are more stable numerically
than results obtained using more conventional DFT elec-
tronic structure methods [27]. In addition, it has been
demonstrated [27] that the SNSO approximation produces
spin-orbit splittings of atomic levels that are in better
agreement with the splittings obtained from a numerical
solution of the four-component Dirac-Kohn-Sham equa-
tion.

To date, no periodic LCGTO-FF calculation has si-
multaneously included both spin-polarization and SOC
effects. This is not due to any fundamental limitation
of the methodology, however. In fact, there has been at
least one example of a fully-relativistic LCGTO-FF calcu-
lation on isolated atoms and diatomic molecules [34], that
included noncollinear spin-polarization. For this investi-
gation, GTOFF has been extended to allow simultane-
ous spin-polarization and SOC effects within the collinear
spin approximation, in which a spin polarization axis is
specified a priori and the off-diagonal spin-density ρα,β ,
relative to the chosen axis, is then assumed to be zero.
This rather limited extension to the LCGTO-FF method
is straightforward to implement, since it is analogous to
the treatment of spin-polarization in the nonrelativistic
case [28], with the one exception that each orbital becomes
a mixture of the two spin-states α and β. An extension of
GTOFF to include noncollinear spin-polarization would
require fitting the off-diagonal spin-density ρα,β in addi-
tion to the diagonal densities ρα,α and ρβ,β. In the present
context, such an extension would not be particularly use-
ful, because the primitive unit cell for the experimentally
observed noncollinear antiferromagnetic ground state con-
tains too many atoms to be computationally tractable
with GTOFF, at this time.

3 Computational details

All of the magnetic orderings considered here have been
modelled using a single (001) layered structure containing
two formula units per primitive cell, thereby ensuring con-
sistency between the various calculations. For the nonmag-
netic and ferromagnetic systems, the two uranium atoms
(and the four oxygen atoms) in each primitive cell are
forced to be equivalent. For the antiferromagnetic struc-
tures, the spins of the two uranium atoms in the unit cell
are assumed to have opposite spins, that are aligned either
in the (001) direction, perpendicular to the atomic layers,
or in the (100) direction, parallel to the atomic layers.
The antiferromagnetic (100) spin structure modelled here
is identical to the structure used in the earlier LDA cal-
culation [17] on UO2 that predicted an antiferromagnetic

ground state. Note that, in the absence of SOC, the ener-
gies and spin-moments are independent of the polarization
axis, as has been confirmed here with test calculations.

To ensure high quality results, relatively rich GTO ba-
sis sets, developed during previous work [19,20], were used
here. The orbital basis set used for uranium began with
a 23s20p15d11f GTO basis set that was derived from the
atomic basis set of Minami and Matsuoka [35]. That prim-
itive basis set was then reduced to a 17s14p11d7f basis
set by contracting the more local GTOs of each l-type
with coefficients obtained from a scalar-relativistic GGA
atom calculation. This use of a so-called “scalar relativistic
basis” is standard practice in most fully-relativistic DFT
crystal calculations today. The specific orbital basis set
size and the contraction pattern used here for uranium
were carefully tested for a plutonium atom in reference [27]
to ensure that the calculated atomic SOC splittings were
well-converged and agreed well with results from a numer-
ical solution to the full four-component Dirac-Kohn-Sham
equation. The orbital basis set for oxygen was a 12s7p1d
GTO basis set, derived from the 11s7p atomic basis set
of van Duijneveldt [36], contracted into a 7s4p1d basis,
using coefficients from a scalar-relativistic GGA atom cal-
culation. The charge/XC basis sets used for uranium and
oxygen were 25s/21s and 9s/9s, respectively. All of these
basis sets can be obtained from the author. For the mag-
netically ordered systems, the charge fitting functions as-
sociated with the various atoms in each unit cell were con-
tracted, so as to impose the desired spin-ordering.

In all calculations, a uniform 4 × 4 × 2 Brillouin zone
(BZ) mesh was used. That mesh was reduced to 12 or
14 irreducible k-points for the antiferromagnetic systems
with their spins aligned in the (001) or (100) directions,
respectively. For simplicity, the nonmagnetic and ferro-
magnetic calculations used the same 12 point mesh as the
antiferromagnetic (001) calculations. All required BZ in-
tegrations were carried out here using a Gaussian broad-
ened histogram technique with a broadening parameter of
2 mRy. Comparison of the lattice constants and bulk mod-
uli found here for nonmagnetic and ferromagnetic UO2

with results from previous calculations using much denser
meshes [19,20] suggests that the BZ meshes are well con-
verged for bulk properties. (Note, however, that these
meshes will not be adequate to produce accurate density
of states plots.) Since the difference in energy between the
two antiferromagnetic orientations is quite small, the BZ
mesh was further tested by recalculating that difference at
one lattice constant (10.34 au) using a 6× 6× 3 BZ mesh.
This enrichment of the mesh only altered the energy differ-
ence by 0.06 mRy, out of 0.71 mRy, again indicating good
convergence. The self-consistent field (SCF) cycle for each
calculation was iterated until the total energy was stable
to within about 0.01 mRy.

For the ferromagnetic systems, the total spin-moment
per formula unit was determined by integrating the dif-
ference between the α and β spin-densities of states, up
to the Fermi level. For the antiferromagnetic systems,
the spin-moment calculations become more complicated,
due to the need to obtain moments for individual atoms.



18 The European Physical Journal B

From symmetry, the total spin-moment for each oxygen
atom must be zero and the moments of the two uranium
atoms must be equal in magnitude but opposite in di-
rection. Even with those constraints, the division of the
spin-densities between the uranium atoms is ill-defined,
at best, and a number of partitioning techniques have
been used in the past. In the prior LDA calculation on
UO2 [17], the spin-moment for each uranium atom was es-
timated by integrating the spin-densities over the atomic
sphere surrounding that atom. Another related technique,
often used in muffin-tin-based methods, relies on integrat-
ing the spin-densities over the muffin-tin-sphere associated
with the atom of interest; yielding a lower bound to the
spin-moment. In the present calculations, the antiferro-
magnetic spin-moment per formula unit was calculated
by summing the difference between the coefficients of the
s-type α and β charge fit functions centered on one of
the uranium atoms. This procedure should yield an upper
bound to the spin-moment. For test purposes, the spin-
moment of each uranium atom was also determined by
the muffin-tin-sphere method, described above, to obtain
a lower bound.

4 Results

For each magnetic ordering, electronic structure calcula-
tions were carried out, both with and without SOC, for
fluorite structure lattice constants ranging from 10.0 bohr
to 10.5 bohr, in increments of 0.1 bohr. An additional set
of calculations was carried out at the experimental lattice
constant, 10.34 bohr [37]. The zero-pressure lattice con-
stant (a), bulk modulus (B), and pressure derivative of
the bulk modulus (B′) were determined for each case by
fitting the calculated energies with the stabilized jellium
equation of state (SJEOS) of Alchagirov et al. [38]. Those
zero-pressure results are listed in Table 1, along with the
binding energy of the magnetic systems (Esp) relative to
the appropriate nonmagnetic system. The energy for each
magnetic ordering is plotted as a function of lattice con-
stant in Figures 1 (without SOC) and 2 (with SOC). The
points in the figures are from the electronic structure cal-
culations, while the lines are from the fits. The good agree-
ment between the points and the fitted lines demonstrates
the high quality of the SJEOS fits and the overall numer-
ical stability of the LCGTO-FF method, as implemented
in GTOFF.

Inspection of the spin-polarization energies listed
in Table 1 reveals that the ferromagnetic structure is
preferred energetically to the two antiferromagnetic struc-
tures, whether or not SOC is included, contrary to ex-
periment [8–10]. This result does not imply any funda-
mental disagreement between the present results and the
previous LDA calculation [17] that predicted an anti-
ferromagnetic ground state at the experimental lattice
constant, since the previous calculation did not consider
ferromagnetic spin-polarization. A comparison of the spin-
polarization energies for the two antiferromagnetic struc-
tures considered here also reveals a rather strong SOC-
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Fig. 1. Energies (mRy/molecule) versus lattice constant
(bohr) for the various magnetic structures without spin-orbit
coupling; solid line – nonmagnetic, dashed line – ferromagnetic,
dotted line – antiferromagnetic. The energies are referenced to
the fitted zero-pressure energy for nonmagnetic UO2. Lines are
from SJEOS fits.

Table 1. Theoretical lattice parameters (a; bohr), bulk
moduli (B; GPa), pressure derivatives of bulk moduli (B′),
spin-polarization energies (Esp; mRy/molecule), and magnetic
moments (µ; µB) are listed for UO2, both with and without
spin-orbit coupling (SOC) included; NM → nonmagnetic, FM
→ (001) ferromagnetism, AFM(001) → (001) antiferromag-
netism, and AFM(100) → (100) antiferromagnetism. Note that
the results without SOC do not depend on the polarization axis
for the spins. Experimental values from reference [37] are given
for a and B.

Order SOC a B B′ Esp µ
NM no 10.18 210 4.39 0.0 0.0
FM no 10.25 206 4.23 –17.8 2.0
AFM no 10.23 187 3.33 –4.1 1.4
NM yes 10.23 197 4.31 0.0 0.0
FM yes 10.26 186 2.99 –1.9 1.5
AFM(001) yes 10.24 186 3.31 –0.6 0.9
AFM(100) yes 10.23 187 4.86 –0.1 0.3
Expt 10.34 213

induced anisotropy, with the (001) alignment being pre-
ferred to the (100) alignment.

The lattice parameters and bulk moduli listed in Ta-
ble 1 for the nonmagnetic systems, both with and with-
out SOC, and for the ferromagnetic system, without SOC,
are in excellent agreement with the results of previous
LCGTO-FF GGA calculations [19,20], despite the use
of a larger unit cell and coarser BZ scan in the present
work. In the previous work, the lattice constant and bulk
modulus that would be obtained in a calculation includ-
ing both SOC and ferromagnetism were estimated by
assuming that the individual effects were additive. The
present results, however, clearly demonstrate that that
assumption was incorrect. Instead, the effects of spin-
polarization, whether ferromagnetic or antiferromagnetic,
are quite small for all of the calculations that include
SOC, due to a partial suppression of the spin-polarization.
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Fig. 2. Energies (mRy/molecule) versus lattice constant
(bohr) for the various magnetic structures with spin-orbit cou-
pling; solid line – nonmagnetic, dashed line – ferromagnetic
(001), dotted line – antiferromagnetic (001), dash-dot line –
antiferromagnetic (100). The energies are referenced to the fit-
ted zero-pressure energy for nonmagnetic UO2. Lines are from
SJEOS fits.

(Note for example the SOC-induced reduction in Esp for
the various magnetic systems.) This result suggests that
nonmagnetic calculations, including SOC, could be used
to study the zero-pressure properties of bulk UO2, without
any significant loss in accuracy relative to spin-polarized
calculations.

The results in Table 1 indicate that the “best” GGA
values for the lattice constant and bulk modulus of UO2

are 10.26 bohr and 186 GPa, from the ferromagnetic cal-
culations. Those results are in reasonable agreement with
the experimental room temperature values, 10.34 bohr
and 213 GPa [37], despite the failure of the GGA calcu-
lations to predict the experimentally observed magnetic
order [8–10]. (Note that the agreement between the lat-
tice constants would be even better if thermal effects were
removed from the experimental value.) This result sug-
gests that, as has been noted before [19,20], any proposed
remedy for the Mott-Hubbard insulator problem in UO2

should not increase the predicted zero-pressure lattice con-
stant by more than a few percent. One somewhat surpris-
ing result is that the inclusion of SOC in the ferromagnetic
calculations produces a deterioration in the agreement be-
tween the theoretical and experimental bulk moduli, re-
ducing B from 206 GPa to 186 GPa. This result suggests
that SOC and electron-localization effects in B tend to
counteract each other. It is thus reasonable to anticipate
that any future remedy to the Mott-Hubbard problem in
UO2 will increase the bulk modulus by more than 10%.

The spin-moments per formula unit (µ) calculated
here, with and without SOC, are shown as functions of
lattice constant in Figures 3 and 4 for the ferromagnetic
and antiferromagnetic structures, respectively. The zero-
pressure spin-moment for each structure was then esti-
mated using linear interpolation; see Table 1. Compari-
son of the antiferromagnetic spin-moment curve obtained
here without SOC (Fig. 4; solid line) with the equiva-
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Fig. 3. Spin-moment (µB) versus lattice constant (bohr) for
ferromagnetic UO2, without (solid line) and with (dashed line)
spin-orbit coupling (SOC). The moments are aligned in the
(001) direction. Lines are guides to the eye only.
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Fig. 4. Spin-moment (µB) versus lattice constant (bohr) for
antiferromagnetic UO2, with and without spin-orbit coupling
(SOC). Without SOC (solid line) the moments do not depend
on the alignment. With SOC, the moments are aligned in ei-
ther the (001) direction (dashed line) or in the (100) direction
(dotted line). Lines are guides to the eye only.

lent curve in Figure 4 of reference [17] reveals a reason-
able level of agreement, given the difference between the
DFT models used in the calculations. In particular, the
present calculations, without SOC, predict an antiferro-
magnetic moment of 1.52 µB at the measured lattice con-
stant, while the earlier LDA calculation yielded roughly
1.49 µB. If the muffin-tin method had been used here to
determine the spin-moment, instead of the charge fitting
coefficient method, the calculated spin-moment would be-
come 1.47 µB. This level of agreement between the various
calculations, lends credence to the overall validity of the
approximation technique being used here.

The spin-moment curves shown in Figures 3 and 4
dramatically illustrate the large effect that SOC has on
the magnetic properties of UO2, as was noted in the
earlier discussion. First, SOC has a significant quench-
ing effect on the spin-moment, regardless of the magnetic
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structure, due to the SOC-induced mixing of α and β spins
in each orbital. Second, SOC introduces a strong mag-
netic anisotropy in the antiferromagnetic state, with the
(001) alignment having a larger spin-moment and spin-
polarization energy than the (100) alignment. This strong
anisotropy may play an important role in the formation
of the true noncollinear antiferromagnetic ground state.
It should be noted, however, that the well-known failure
of standard DFT models to correctly predict the Mott-
Hubbard insulating behavior in UO2 is not affected by
including SOC or by altering the magnetic structure; i.e.,
all of the present DFT calculations produce a metallic
ground state in UO2.

5 Conclusions

Simultaneous collinear spin-polarization and SOC has
been successfully implemented in an all-electron LCGTO-
type electronic structure program for periodic systems.
That program has been used to carry out the first
fully-relativistic spin-polarized electronic structure calcu-
lations on fluorite structure UO2. Three types of collinear
spin-orderings were considered; ferromagnetic with spins
aligned in the (001) direction and two antiferromagnetic
(001) layer structures with spins aligned either perpendic-
ular to each plane (001) or parallel to each plane (100).
The ferromagnetic order was found to be energetically
preferred to the antiferromagnetic order, with or with-
out SOC, contrary to experiment [8–10]. SOC was shown
to have a significant quenching effect on the spin-moment
and to introduce a strong magnetic anisotropy in the anti-
ferromagnetic state, stabilizing the (001) polarization rel-
ative to the (100) polarization.

This work was supported by the US Department of Energy
under contract W-7405-ENG-36. Partial support was provided
by the LDRD program at Los Alamos National Laboratory.
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